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Three mathematical models are developed for meniscus roll coating in which there 
is steady flow of a Newtonian fluid in the narrow gap, or nip, between two contra- 
rotating rolls in the absence of body forces. 

The zero flux model predicts a constant pressure gradient within the central core and 
two eddies, each with an inner structure, in qualitative agreement with observation. 
The small flux model takes account of a small inlet flux and employs the lubrication 
approximation to represent fluid velocity as a combination of Couette and Poiseuille 
flows. Results show that the meniscus coating regime is characterized by small 
flow rates ( A + , l )  and a sub-ambient pressure field generated by capillary action at 
the upstream meniscus. Such flows are found to exist for small modified capillary 
number, C U ( R / H O ) * / ~  2 0.15, where Ca and R / H o  represent capillary number and 
the radius to semi-gap ratio, respectively. 

A third model incorporates the full effects of curved menisci and nonlinear free 
surface boundary conditions. The presence of a dynamic contact line, adjacent to the 
web on the upper roll, requires the imposition of an apparent contact angle and slip 
length. Numerical solutions for the velocity and pressure fields over the entire domain 
are obtained using the finite element method. Results are in accord with experimental 
observations that the flow domain consists of two large eddies and fluid transfer jets 
or ‘snakes’. Furthermore, the numerical results show that the sub-structure of each 
large eddy consists of a separatrix with one saddle point, two sub-eddies with centres, 
and an outer recirculation. 

Finally finite element solutions in tandem with lubrication analysis establish the 
existence of three critical flow rates corresponding to a transformation of the pressure 
field, the emergence of a ‘secondary snake’ (another fluid transfer jet) and the 
disappearance of a primary snake. 

1. Introduction 
The fluid mechanics of roll coating, with rigid rolls operating in either forward 

or reverse mode, has been extensively researched. Figure 1 illustrates forward mode 
coating in which the rolls of radius R1 and R2 move in the same direction through 
the nip with peripheral speeds U 1  and U2, respectively. A fluid film of thickness Hi 
is picked up from a coating pan by the action of viscous lifting and enters the nip 
where the minimum gap thickness is 2H0. There are two coating regimes of practical 
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I Coating pan 

FIGURE 1. Schematic of a two-roll coater operating in forward mode. 

FIGURE 2. Magnified view of the nip region of a two-roll coater showing (a) a flooded inlet, 
jb) a starved inlet typical for meniscus roll coating. 

importance, each identified according to the inlet feed condition, Malone (1992). 
They are the classical (inlet-flooded) regime and the meniscus (inlet-starved) regime 
as illustrated in figures 2(a) and 2(b), respectively. The former is the most familiar, 
for which there has been a wide range of experimental, analytical and computational 
investigations. These include the measurement and prediction of flux and film 
thickness (Pitts & Greiller 1961 ; Hintermaier & White 1965; Benkreira, Edwards 
& Wilkinson 1981; Savage 1982, 1984) together with pressure and velocity field 
distributions (Greener & Middleman 1975, 1979; Schneider 1962; Coyle, Macosko & 
Scriven 1986, 1987, 1990a,b; Coyle 1992). 

Though used in industry for many years (Gaskell & Savage 1995), meniscus roll 
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(a)  
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FIGURE 3. Actual and schematic dye traces, showing the flow in the bead of a meniscus roll coater 
with R/Ho = 125 and rolls moving left to right: ( a )  S = 1; ( b )  S = 2. 

coating appears to have escaped the attention of the coating community at large. 
Lack of references in the literature is perhaps due to an assumption by practitioners 
and theoreticians alike that this coating regime was essentially no different to the 
inlet-flooded regime. With the first experimental investigation of meniscus roll coating 
Malone (1992) demonstrated clearly the fallacy of such an assumption. His work 
showed the flow domain to be that of a ‘small bead’ located in the nip and extending 
along the length of the rolls. Axial velocity is negligible and the flow is thus two- 
dimensional as shown in figure 3(a,b) for speed ratio S = 1 and S = 2, where 
S = Ul/U2. In each case the flow is observed to consist of two large eddies and a 
primary fluid transfer jet, or ‘snake’, transferring fluid to the web on the upper roll. 

Three mathematical models for inlet-starved roll coating are presented, two of 
which are solved analytically and the third numerically. In the ‘zero flux’ model, the 
coating bead is assumed to be rectangular in cross-section with the menisci modelled 
as planes on which shear stress is zero and flux through the bead is neglected. 
Mathematically, the model reduces to the solution of a boundary value problem for 
the streamfunction which is similar to the driven cavity problems studied by Pan & 
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Acrivos (1967) and Canedo & Denson (1989). A solution for the streamfunction is 
obtained analytically in the form of a truncated series of eigenfunctions. 

A ‘small flux’ model is formulated to take into account a small non-zero flow 
rate with H,/Hoel. Following a suggestion by S. M. Richardson (1988, personal 
communication) the flow in the centre of the bead is modelled as a combination of 
Couette and Poiseuille flow, thus giving rise to Reynolds’ equation for the pressure 
distribution within the bead. 

Though these analytical models do provide valuable insight into the flow structure 
and relationships between flow parameters, nevertheless they cannot reveal a complete 
picture. A more refined model is needed to take account of a dynamic contact line 
and nonlinear boundary conditions on two free surfaces whose shape and location 
are not known a priori. A dynamic contact line is where a free surface intersects a 
moving web at a well defined angle (Burley & Kennedy 1976) and where the precise 
boundary conditions are still a matter of some debate (Dussan V. 1979; De Gennes 
1985). 

Nonlinear boundary value problems of this sort require a numerical solution and 
because of its topological flexibility use was made of the finite element method 
(Zienkiewicz 1982), together with an appropriate free-surface parametric representa- 
tion - see, for example, Kistler & Scriven (1983). Such methods were first applied to 
inlet-flooded, symmetric ( U ,  = U2), forward roll coating by Coyle et al. (1986) and 
subsequently extended to accommodate both unequal roll speeds and nowNewtonian 
rheology (Coyle et al. 1987). More recent investigations included an analysis of flow 
stability (Coyle et al. 1990a) and reverse roll coating (Coyle et al. 1990b). In all 
this work, except for reverse roll coating, only the downstream end was solved thus 
simplifying the problem quite considerably. The assumption of a flooded inlet allowed 
the region of interest to be terminated by appropriate boundary conditions at the 
point of minimum roll separation; it also removed the difficulty associated with the 
presence of a dynamic contact line, reducing the problem to the case of just one free 
surface. 

The numerical solutions reported here not only complement the work of these 
authors, they represent also perhaps some of the most revealing and detailed compu- 
tational results for fixed-gap forward roll coating available currently. 

2. Zero flux model and eigenfunction solution 
The two characteristic features of a meniscus roll coater are a substantially reduced 

inlet film and a fluid bead located in the nip between the moving rolls. 
Central to the zero flux model is the assumption of negligible flux since the inlet 

flux is typically less than one tenth of that for an inlet-flooded roll coater. Additional 
assumptions include: 

(i) a Newtonian fluid of constant density p and viscosity p ;  
(ii) steady flow with negligible axial velocity, fluid inertia and body forces; 
(iii) a closed and rectangular fluid domain of height 2Ho and width 2Lo. The 

curvature of both the rolls and the free surfaces is assumed to be small so that the 
former can be modelled by horizontally moving flat plates and the latter by planes 
of zero shear stress. Consequently the normal stress condition at the free surface is 
redundant for the solution of this boundary value problem. It  would only be used to 
provide a first-order correction to the free surface shape. 

In the usual notation, with velocity components U = ( U ,  W )  and pressure P ( X ,  Z ) ,  
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the flow is described by Stokes’ equations: 

au aw 
ax az o = - + - - ,  

for which the solution is expressed in terms of a streamfunction Y ( X , Z )  

where Y is the solution of the biharmonic equation: 

V ~ Y  = o .  (2.4) 

Suitable non-dimensional variables are 

such that the fluid domain is given by 

where A = &/LO is the aspect ratio. 
Boundary conditions include: 
(i) no slip on upper and lower lids: 

z = + A ,  3-  aw aZ - S ,  - = 0  ax on 

(ii) zero shear stress and zero normal velocity on the free surfaces: 

Conditions (2.7) and (2.8) are equivalent to imposing y = constant = 0 on all 
four boundaries together with dy/az  = S on z = +A, ay/az  = 1 on z = -A and 
a2y/ax2 = 0 on x = k l .  The complete boundary value problem, given in figure 4(a), 
is much simpler than the associated lid-driven cavity problem addressed by Joseph 
& Sturges (1978) and Shankar (1993), since the ‘natural’ eigenfunctions of equation 
(2.4) are in this case real. The general solution satisfying conditions on x = k 1  can 
be written (Thompson 1992) as 

m 

y ( x ,  z) = C {z(A,epn’ + Bne+nZ) + c,epnz + D,e-finZ} cos(pnx) , (2.9) 
n= 1 

where the Pn are real eigenvalues given by 

Pn = (n  - 1/2)n, n = 1,2, ... (2.10) 
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FIGURE 4. ( a )  Boundary conditions for Stokes flow in an idealized rectangular bead with zero flux, 
bounded by two free surfaces and two moving plates. Streamfunction solution of the zero flux 
model for ( b )  A = 2 / 3 ,  S = 1, ( c )  A = 2/3, S = 2, illustrating the rich sub-structure that arises as 
a result of a stagnation point bifurcation. 

The unknown coefficients A,, B,, C, and D, are determined from conditions on 
z = f A :  

The series given by equation (2.9) is truncated at the point where convergence is 
achieved. In practice 20 terms are found to be sufficient - experience shows that 
streamfunction values agree to six decimal places whether 20 or 50 terms are used in 
the series expansion (Thompson 1992). 

Figure 4(b) shows streamline contours for the above problem first obtained by 
Thompson (1992). There is close agreement between the eddy structure observed 
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experimentally, figure 3(a), and the analytical prediction of figure 4(b). The flow is 
seen to exhibit a double-eddy structure with both eddies of equal size and separated 
by a dividing streamline. 

Apart from the presence of eddies two, quite unexpected, results emerge from the 
zero flux model: 

(i) As A is decreased or S is varied the eddies undergo a structural transformation. 
At a critical value, a stagnation point bifurcation arises - an eddy centre becomes a 
saddle point - so that what was once a single large eddy now consists of a separatrix 
with one saddle point, two sub-eddies with centres, and an outer circulation. This 
flow structure is demonstrated in figure 4(c) for the case A = 2/3, S = 2. The upper 
eddy is now twice the depth of the lower one, mirroring the global features observed 
experimentally, figure 3(b) ; work is currently being directed at improving the spatial 
resolution of experiments in order to reveal the underlying sub-structure. Similarly, 
stagnation point bifurcations in two-dimensional Stokes flows due to varying aspect 
ratio and speed ratio is the subject of further research. 

(ii) In terms of the streamfunction, y ,  the width-wise pressure gradient, d p / d x ,  is 
given by 

(2.12) 

or in series form as 

In the central core of the flow domain, away from either meniscus, as S is varied for 
a given aspect ratio, A, a p / d x  is effectively constant on the centreline z = 0. This 
indicates a pressure profile linear in x which is in marked contrast to that observed 
in an inlet-flooded roll coater which exhibits a characteristic maximum and minimum 
(Pitts & Greiller 1961). 

By integrating expression (2.13) fluid pressure is determined to within an arbitrary 
constant, whose value cannot be determined from this simple model since curvature of 
the menisci is neglected. Figure 5 shows p plotted along the centreline of the solution 
domain for two values of S and A.  These were found by taking 20 terms in the 
series expansion for p whose convergence characteristics are the same as those for y .  
This linear pressure distribution suggests that the pressure field in a meniscus coater 
may be entirely sub-ambient arising as a result of capillary action at the upstream 
and downstream menisci. It is found (Thompson 1992), that for small aspect ratios, 
pressure is effectively independent of z - a result which forms the basis of the small 
flux model presented in $3. 

3. Small flux model and lubrication solution 
The key results from the zero flux model that, in the central core, the flow is one- 

dimensional and pressure is independent of Z suggest the need for a model which 
takes account of a small, non-zero flux and treats the velocity field as a combination 
of Couette and Poiseuille flow. 

Figure 6 shows a schematic of the bead in the interval -B < X < +D. Fluid enters 
in a uniform layer of thickness Hi and exits by way of two uniform layers of thickness 
HI and H2 attached to the web on the upper roll and the lower roll respectively. 
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FIGURE 5. Width-wise pressure distribution as predicted by the zero flux model: 
(a) A = 2 / 3 ,  S = 1, 2; (b) S = 1, A = 2/3, 1/3. 
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FIGURE 6. Schematic of a meniscus coating bead with small flux, bounded by 
two menisci and two moving rolls. 

Continuity of flow requires that 

Hi = H2 + S H 1 .  

Assuming lubrication theory to be valid (where the flow is effectively one-dimen- 
sional; W/U41 and a / a X 4 a / a Z ) ,  equations (2.1) reduce to 

- = 0 ,  
aP 
az 

k (3.2) 

and the solution for velocity U ( X , Z )  satisfying U = U1 at Z = H ( X )  and U = U, 
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on Z = -H(X) is 

1 d P  2 (U1-Uz)Z ( U l + U 2 )  

2p ax 2 ,  
- +  

2 H  
U = - - ( Z 2 - H ) +  

where H ( X )  is the semi-gap width at station X, approximated by 

with 2/R = l /R1 + 1/R2. The flux Q, per unit axial length, is given by 

2 d P  
Q = / + " U d Z  =---H3+(U1+U2)H, 3p dX 

-H 

(3.3) 

(3.4) 

(3-5) 

and since classical roll coating (with flooded inlets) is a self-metered process - in 
which the flow rate Q is determined by geometry and roll speeds - it is usual to non- 
dimensionalize Q by means of an average speed ( U1 + U2)/2 and the gap thickness 
2H0, giving 

In meniscus roll coating, however, neither the gap nor the upper roll speed play 
any part in determining Q. In fact all the fluid approaching the inlet is transmitted 
through the nip and Q is given by 

Q = U2Hi . (3.7) 

It is useful therefore to introduce a new dimensionless flow rate 22 defined by 

where 22 provides a natural measure of the degree of inlet starvation and is related 
to 1. by 

(3.9) 

such that 2 = 22 when S = 1 only. 
Reynolds' equation for pressure P(X) follows from equations (3.5) and (3.6): 

(3.10) 

and hence the velocity U(X,Z) can be written in the form 

a ( x , Z ) - 3 ( 1 + S ) (  2 H o )  ( z2 1>.("1') z ( l + s  ) 
(3.11) 

Since a meniscus roll coater operates with 2-41 then in the central core, where 
H(X) NN Ho, the pressure gradient is a positive constant proportional to p(1 + S ) / H i .  
Also, U(X,Z) is quadratic in Z and has two zeros across the gap for all positive 
values of S. It can, therefore, adequately describe unidirectional flow in the central 
core consisting of a narrow transfer jet snaking around a pair of eddies. As indicated 
previously this jet is the means by which fluid is transferred to the web on the upper 
roll and, as such, is similar to that appearing in the upstream recirculation region of 
an inlet-flooded roll coater (Pearson 1985). 

H(X) 
- 1-- 

u2 4 H(X) H2(W 
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A suitable domain for this lubrication solution cannot extend as far as the free 
surfaces for obvious reasons. However, the W-component of velocity appears to be 
significant only in a very thin layer adjacent to each free surface. Hence we shall 
solve Reynolds' equation in the domain -B* d X < D', as shown in figure 6, and 
also assume that fluid pressure at each end point is given by capillary pressure at the 
corresponding meniscus. 

If RE, RD are the radii of curvature of the upstream and downstream menisci then 
the fluid pressures there are given by 

(3.12) 

where 0 is surface tension. 
Introducing the following non-dimensional variables : 

reduces Reynolds' equation (equation (3.10)) to the form 

2- 3 3, 

dx - (1 +x2)2 [l-m] ' 

which is solved for pressure by writing X = tana: 

(3.14) 

p(a) = 3 (cos2a - kos4a)da + constant . (3.15) 

Approximating RD and RB by the semi-gap width, H ( D ) ,  and the full gap width, 
J 

2 H ( B ) ,  respectively and writing 2 = D/(2RH0) ' I2;  5 = B/(2RH0)'/2, then 

H ( D )  = RD = Ho( 1 + Z2) ,  2 H ( B )  = RB = Ho(1 + g 2 )  . (3.16) 

Hence the solution of (3.15) subject to (3.12) and (3.16) with 6 = tanah, 2 = tanad 
and capillary number defined by 

(3.17) 

is 

+ j ( a h  + ad) + sin2ab + sin2ad 1 . (3.18) 
[ sin4ah ; sin4ad 3 

The two non-dimensional parameters appearing in equation (3.18) are flow rate 1 and 
a modified capillary number, Ca(R/Ho) ' /2 ,  which measures the relative importance of 
hydrodynamic to capillary pressure. 

In the classical roll coating regime inlets are flooded, modified capillary numbers 
are large and the left-hand side of equation (3.18) is negligible. In the meniscus 
coating regime, however, flow rates are small 241, C a ( R / H o ) ' / ' a l  and so the left- 
hand side of (3.18) is of similar magnitude to the first term on the right-hand side. 
This indicates that hydrodynamic pressures in the fluid bead are of similar magnitude 
to the capillary pressure generated at the upstream meniscus. 

Once Ca,(R/H0)1/2  and 2 are specified, then equation (3.18) yields a relation 
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between a b  and ad which has predictive value provided either Mb or ad can be 
determined independently. In fact ad can be estimated using the results of Landau & 
Levich (1942) relating the uniform film thicknesses on the web and lower roll to the 
radius of curvature, RD, of the downstream meniscus: 

213 2/3 

- _  H1 - 1.34 (%) - H2 - - 1 . 3 4 ( e )  . 
RD ’ RD 

(3.19) 

Taking expression (3.16) as a suitable approximation for RD the following results 

(i) For the symmetric case of equal speed rolling U1 = U2 = U ,  S = 1, A = 22, 
arise. 

Ca = pU/a, H1 = H2 = Hi/2 and equations (3.16) and (3.19) give 

(3.20) 

For a given flow rate equation (3.20) is solved for Ed as a function of capillary 
number. This solution is then used to solve equation (3.18) for ab as a function of 
capillary number once the geometry ratio, R/Ho, is specified. Figure 7(a) shows plots 
of tana against Ca for R/Ho = 100 and /22 = 0.2 in which the upper and lower curves 
represent the location of the downstream and upstream menisci, respectively. 
For the asymmetric case, S # 1, i # i 2 ,  and expressions for HI and H2 given by (3.19) 
are substituted into equation (3.1) to give 

which can be rearranged using the identities 

to yield an expression for 2: 
2/22 (;(I + S))2i3 

1 + 2 =  
1.34(Ca)2/3 [I + S2I3] . 

(3.21) 

(3.22) 

With R/Ho, /22 and S specified, equations (3.22) and (3.18) are solved for ad and ab as 
functions of capillary number thus giving plots of tancl against Ca for the asymmetric 
flow, S = 1/2, when R/Ho = 100 and l2 = 0.2, figure 7(a) .  
The speed ratio clearly has a negligible effect on the position of the upstream and 
downstream free surfaces. It is a result observed experimentally (Malone 1992), and 
to be expected in the light of equation (3.22) where the factor [( 1 + S)/2l2I3/[l + S2l3] 
is symmetric about S = 1 and has only a 6% variation over the range of practical 
interest, 1/5 < S < 5. 

(ii) Since speed ratio has a negligible effect then, for a given flow rate, it follows 
that capillary number determines the position of the downstream meniscus whereas 
the upstream meniscus is determined by both capillary number and the modified 
capillary number, Ca(R/Ho)1/2, equation (3.18). This is illustrated in figure 7(b) where 
curves are shown for symmetric flows with R/Ho = 100, 200 and 400. 

(iii) Figure 7(a,b) illustrates that a fluid bead is established with the upstream 
meniscus in the interval 0 < 6 < 2 provided that the capillary number lies in the 
range < Ca < 
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FIGURE 7. (a) Upstream and downstream meniscus locations plotted as a function of capillary 
number for the case RIHO = 100, 22 = 0.2 with S = 112 and S = 1. (b)  Curves showing the effect 
of R / H o  on the position of the upstream meniscus. 

For a given R/Ho, it is observed that 6 decreases as Ca increases and so the 
upstream meniscus approaches and eventually passes through the nip. Once through 
the nip the interface appears to become unstable (Malone 1992), giving rise to a 
phenomenon called ‘bead break’ - the cause of which is unclear and the subject of 
further investigation. On the other hand, when Ca is decreased the upstream meniscus 
moves away from the nip yet, in practice, it can only move out so far. At a certain 
distance capillary pressure is comparable to that at the downstream meniscus and the 
pressure field ‘collapses’. The assumption on which the small flux model is based - 
that pressure and viscous forces are in balance, with inertia negligible - is no longer 
valid and therefore a stable bead cannot form. Computational results, described in 
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FIGURE 8. A non-dimensional pressure profile for R/Ho = 100,Ca = 1.3 x S = 1, 
A = 0.075, 6 = 1.55 and = 3.5 as predicted via the small flux model. 

the following section, confirm that the location of the upstream meniscus usually lies 
in the range 0 < 6 < 2. Figure 7(a,b) also indicates that the extent of the fluid bead 
should decrease monotonically with capillary number. 

(iv) Figure 8 shows a typical pressure distribution, as predicted by the small flux 
model for S = 1, A = 0.075, R/Ho = 100, Ca = 1.3 x & = tanclb = 1.55 and 
a = tancld = 3.5. As expected this pressure field is sub-ambient entirely as a result of 
capillary action at the menisci and exhibits a linear rise through the central core as 
predicted by the zero flux model. 

(v) Conditions (3.12) and (3.19) are the boundary conditions required to close the 
problem and as such have a similar status to those derived by Coyne & Elrod (1970). 
Ruschak (1982) compared finite element results for flow rate against capillary number 
with those predicted using Coyne & Elrod’s conditions, showing very close agreement 
for capillary numbers greater than lo-’. Later, Ruschak (1985), derived a two-thirds 
power law for film thickness ratio: 

(3.23) 

a result which was shown to be asymptotically valid as Ca - 0. Hence one would 
expect expression (3.19) to be particularly applicable to meniscus coating where 
Ca < lo-’. Indeed, in the following section computational results are seen to be in 
accord with equation (3.23). 

4. Small flux model and finite element solutions 
Further refinements to the mathematical model include the presence of curved 

menisci, nonlinear free-surface boundary conditions and a dynamic contact line 
requiring the imposition of a slip-length and apparent contact angle, the latter 
suggested by experiment. This requires the solution of the full nonlinear boundary 
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‘ No 
slip 

FIGURE 9. Nonlinear boundary conditions for Stokes flow in a bead incorporating the effects of a 
dynamic contact line and curved menisci: n and t are unit normal and tangent vectors, respectively, 
and s is the free surface arc-length. 

value problem described by equations (2.1) and (2.2) written in divergence form 
(Kistler & Scriven 1983), as 

V . T =  0 ,  V . U =  0 ,  (4.1) 

where T = -PI + p[V U + (V U ) T ]  and I are the stress and unit tensor, respectively. 
A numerical solution was obtained using a Galerkin, weighted residual finite ele- 

ment formulation for equations (4.1), with X ,  2, U ,  W ,  P and T non-dimensionalized 
as follows: 

The attendant boundary conditions are given in figure 9. The reader will note that 
the capillary number in this case is defined as Ca2 = p U 2 / a  and is related to Ca in 
the following way: Ca = [(1+ S)/2]/Ca2. 

A finite element approach was adopted because of its topological flexibility, particu- 
larly in relation to flows bounded by one, or more, highly curved free surfaces 
which can be handled satisfactorily with an appropriately formulated parametric 
representation. In the current work the spine approach of Kistler & Scriven (1983) 
is adopted, together with a novel combination of multiple origins and spine inter- 
dependency (Gaskell et al. 1995), as a more cost effective alternative to employing 
elliptic grid generation (Christodoulou & Scriven 1992), within an iterative framework, 
for the same element density. 

The region of interest was tessellated into triangular V6/P3 elements, which are 
taken to satisfy the LBB stability condition (Babuska & Aziz 1972). With the pressure 
interpolation one order lower than that for velocity, the rate of convergence is ‘optimal’ 
and no ‘locking’ (Hughes 1987), occurs. The assembled global stiffness matrix was 
solved using the frontal method (Hood 1976), and Newton iteration, resulting in 
second-order convergence of the system, within a maximum of six iterations. 

The grid-independence of the solutions, in particular the accuracy of predicted film 
thicknesses, was investigated by employing systematic grid refinement of the solu- 
tion domain. Four levels of grid refinement were considered containing 549, 1615, 
3185, 8241 elements and 2562, 7330, 14399, 37143 degrees of freedom, respectively. 
Results for the latter two grid levels were found to be indistinguishable and hence 
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FIGURE 10. Flow structures in the bead of a meniscus roll coater for R/Ho = 100 and 12 = 0.075: 
(a) S = 1/2, Caz = 2.25 x (b)  S = 1, Ca2 = 1.80 x ( c )  S = 2, Ca2 = 7.0 x 

a grid containing 3 185 elements was deemed adequate to guarantee fully converged, 
grid-independent solutions. 

Finite element solutions were found for a two-roll coater with R/Ho = 100, a 
constant flow rate A2 = 0.075, various capillary numbers, Caz, and an apparent 
contact angle of 95" at the dynamic wetting line, as suggested from experiment 
(R. C. Lodge 1994, personal communication). Figure 10(a-c) shows streamline 
plots of the flow when S = 1/2, 1 and 2 with corresponding capillary numbers 
Ca2 = 2.25 x and 7.0 x lop4, respectively. 

Figure 10 reveals a 'double-eddy' structure with eddy thickness dependent on S - 
in qualitative agreement with experiment and the predictions of the zero flux model. 
The flux of fluid in the transfer jet, subsequently referred to as the 'primary snake', 
is seen to increase with S. Corresponding sub-ambient pressure fields are displayed 
in figure 11 which are in accord with the predictions from the small flux model. 
Figure 12 shows the effect of flow rate RZ on film thickness ratio for S in the interval 
1/5 < S < 5/2, illustrating that H1/H2 is independent of h2. Figure 13, on the other 
hand, shows the variation of HI/H2 with S for a flow rate 22 = 0.14, including a 
comparison with equation (3.23) obtained from the analysis of Landau & Levich, 
equation (3.19). Agreement between the two curves is extremely good over the whole 
speed ratio range. 

For a non-dimensional flow rate A2 = 0.2 and gap ratio, R/Ho = 100, figure 14 
shows comparisons between finite element solutions and analytical results via the 
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small flux model for two values of S. Agreement is surprisingly good and shows each 
meniscus approaching the nip as Ca increases, so that the extent of the fluid bead 
diminishes. 

In order to assess the significance of the gap ratio R/Ho, equations (3.18) and (3.20) 
are of particular relevance. With flow rate specified, equation (3.20) implies that Ca 
determines the position of the downstream meniscus and, whatever its value, equation 
(3.18) implies that the modified capillary number , C U ( R / H ~ ) ' / ~ ,  is the key parameter 
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FIGURE 13. The variation of H 1 / H 2  with S for R/Ho = 100 and flow rate, 12 = 0.14: 
0,  finite element solutions; - - - - -, Landau-Levich, equation (3.19). 

responsible for determining the position of the upstream meniscus. This suggests that 
a plot of Ca(R/Ho)1/2 against B/Ho may serve to identify that part of parameter 
space in which meniscus roll coating arises. Hence figure 15 includes the relevant 
finite element solutions for A2 = 0.2 and S in the interval 1/5 < S < 3. Meniscus roll 
coating is therefore revealed to be a process arising under conditions of both small 
capillary number and small modified capillary number; CU(R/HO) ' /~  2 0.15. 

5. Feed condition and critical flow rates 

feed condition, and three critical flow rates are identified. 

5.1. Pressure field transformation (A = I) 
First it is shown that h < 1 is a necessary condition for obtaining pressure profiles 
typical of meniscus roll coating. If the feed condition is such that the inlet is 
flooded or moderately starved then the pressure profile will exhibit stationary points 
where pressure has either a local maximum or minimum value. At a stationary point 
dp/dW = 0 and therefore this condition together with Reynolds' equation for pressure, 
equation (3.10), reveals their locations to be where 

In this section the effect is considered of varying the non-dimensional flux h, or 

R2 = 1 - 1 .  (5.1) 

Provided A > 1 these stationary points will be located symmetrically about the nip. 
When A < 1, equation (5.1) has no real solutions and therefore no stationary points 
occur. Hence 1 = 1 is the critical flow rate at which there is a smooth transformation 
in the shape of the pressure profile to one which exhibits no stationary points, 
is everywhere sub-ambient and is dominated by capillary action at the menisci. 
Furthermore, computational results have confirmed that this flow rate is independent 
of Ca, S and R/Ho. Figure 16 shows the pressure profile transformation with A in 
the interval 0.8 < h < 1.3, obtained using the finite element method with R/Ho = 100 
and S = 1. 

5.2. EJect of feed condition on velocityfield 
Clearly h < 1 is only a necessary condition for meniscus roll coating since, in practice, 
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FIGURE 14. A comparison between analytical and finite element solutions (+) for the upstream and 
downstream meniscus locations as functions of Ca with R/Ho = 100 and 22 = 0.2: (a)  S = 1; ( b )  
s = 1/2. 

inlets are starved with Ael. To specify this coating regime more accurately requires 
additional information about the velocity field from the finite element solutions as 
the flow rate is varied. 

Starting with an ultra-starved inlet, A2 = 0.075, figure 10(a-c) shows two large 
eddies and a characteristic primary snake carrying fluid to the web on the upper 
roll. From insight gained in $2 each eddy is seen to consist of a bounding streamline 
pinned to a free surface, an outer recirculation, a separatrix with one saddle point 
and two sub-eddies as illustrated in figure 17 for S = 1/2. As flow rate is increased 
gradually the additional flux causes pinching of the lower eddy close to the nip so that 
streamlines in its outer recirculation, including the bounding streamline, are drawn 
successively into the saddle point. 
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FIGURE 15. Cu(R/Ho)'/* plotted against B / H o  obtained from finite element solutions 
with S in the interval 1/5 < S < 3.  
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FIGURE 16. Pressure profiles for R/Ho = 100, S = 1 and I in the interval 0.8 < I < 1.3 
illustrating the transformation in shape at i = 1. 

- 

Figure 18(a) shows a flow pattern for a critical flow rate, AZS = 0.1111, S = 1, 
at which the bounding streamline is also part of the separatrix passing through 
three stagnation points P1,P2 and P3. Also shown, located immediately below this 
separatrix, is a streamline (part of the primary snake) which will be next to be drawn 
into the saddle as ,I2 is increased. Figure 18(b) shows this streamline as part of the 
separatrix and the former separatrix/bounding streamline is now detached from the 
saddle point giving rise to a 'secondary snake' in the lower left of the diagram, that 
is fluid is able to circumnavigate the now isolated sub-eddy and flow between its 
bounding streamline P2P3P1 and the separatrix. Fluid entering the bead can now 
transfer to the web on the upper roll via either the primary or secondary snakes. 
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FIGURE 17. An illustration of the important streamlines and features which make up the ‘lower 
eddy’ for RIHo = 100, Ca2 = 2.25 x 1 2  = 0.075 and S = 112. 

FIGURE 18. The onset of the secondary snake for R/Ho = 100, Ca2 = 2 x lop3 and S = 1 : (a) critical 
flow rate, i 2  = 1zS = 0.1111, in which part of the separatrix passes through the three stagnation 
points P I ,  P2, 9; (b)  the secondary snake is established, 1 2  = 0.13 and the bounding streamline 
PIP2P3 is now detached from the saddle point. 

As flow rate continues to increase, the flux in the secondary snake increases while 
that in the primary snake diminishes as streamlines are successively drawn into the 
saddle point. Also the lower left sub-eddy is observed to contract and disappear 
eventually, figure 19(a,b). A further critical flow rate now arises, A2p = 0.3327, when 
the flow in the primary snake decreases to zero; the primary snake disappears and 
fluid transfer to the web on the upper roll is entirely by means of a fully developed 
secondary snake. The critical flow pattern is illustrated in figure 20 where the dividing 
streamline, separating inlet fluid which reaches the web from that which remains 
attached to the lower roll, rises and is attracted into the saddle point. 

Lubrication theory is used below to predict these two critical flow rates and requires 
the location of the lower of the two stagnation (saddle) points in the nip at R = 0. Its 
non-dimensional 1 coordinate, 91, is obtained as a function of 1 and S via equation 
(3.1 1) : 

(1 -A)(?? - 1) + - 2 (-) s-1 21 + 3 2 = 0 .  
3 s + l  

Emergence of the secondary snake, i = As 
When the flow conditions are critical with the secondary snake about to emerge, 
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FIGURE 19. The effect of increasing the flux for R/Ho = 100 and S = 1, showing that flux in the 
secondary snake increases while that in the primary snake diminishes: (a) 12 = 0.18, Caz = 2 x 
( b )  a2 = 0.3, ca2 = 3.25 x 10-3. 

1 = 1, and the total inlet flux, Q = U2Hi, is identically equal to the flux of fluid 
flowing between the lower roll and the lower of the two saddle points, figure 18(a). 
Hence evaluating the flux integral at % = 0: 

i.e. 

yields a cubic for 21, now a function of A, and S :  

(S - 1) (2f - 1) 3 
- ( l - A , )  - - z , - -  +---- 21 + 1 +-- 

2 
- 1, . 

4 [: :I (S + 1) 4 (5.4) 

Solving equations (5.2) and (5.4) simultaneously gives the following solutions for 

> (5.5) 

(5.6) 

21 and 1,: 
[3(1 - AS)(3As(1 + S) - (1 - S)) - (1 - S)](l + S) 

3( 1 - &)(3AS - 1)( 1 + S)2  - (1  - S)2 

"9  

21 = 

I .  2 3 + 2s - 2(S2 + 3S)"2 1 - - [  1 + S  

This critical flow rate, A,, is speed-ratio dependent yet independent of capillary 
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FIGURE 20. Switching off the primary snake when R / H o  = 100 and S = 1 :  (a )  critical flow rate 
A2 = ,Izp = 0.3327, Ca2 = 3.25 x fluid transfer to the web on 
the upper roll is entirely via the secondary snake and the saddle points have now moved apart. 

( b )  A2 = 0.35, Ca2 = 3.6 x 

number and geometry ratio. Figure 21 shows a plot of As against S as given by 
equation (5.6) together with a number of data points for the onset of the secondary 
snake obtained via the finite element method. In particular, equation (5.6) predicts 
a critical flow rate of As = 1/9 for symmetric flows (S = 1) which compares very 
favourably with the value of 3LzS = 0.1111 found computationally, see figure 18(a). 
Disappearance of the primary-snake, I = A, 

lower roll and the lower of the two stagnation (saddle) points, evaluated at R = 0: 
The starting point is to consider the non-dimensional flux of the fluid between the 

(5.7) 

When conditions become critical (figure 20) 1 = I,, the flux in the primary snake 
decreases to zero and the above flux is all carried away on the lower roll. This flux, 
given by expression (5.7) with A = A,, is identically UzH2; also 

. (5.8) H2 

2Ho(l+ S)  

Solving equations (5.2) with 1 = A, and (5.8) will, in principle, determine 2, and 
Ap.  The problem is that we do not have a general expression for H2 except for the 
particular case of equal speed rolling, S = 1, for which H2/[2Ho(l + S)]  = ;Ap. This 
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FIGURE 21. The onset of the secondary snake for R / H o  = 100. Theoretical curve for critical flow 
rate 1, as a function of S :  0, data points obtained from finite element solutions; the curve is that 
predicted via lubrication theory, equation (5.6). 

Inlet condition Fluid transfer mechanism Flow rate 

Starved Primary and secondary snakes 1, < 1-41, < 1 

TABLE 1. The meniscus coating regime 

Ultra-starved Primary snake a Q 1, 

is the only case for which A, can be predicted and the solutions are 

ZI = o ;  A P - 3 '  - 1. (5.9) 

The finite element computations yield a value of A2, = 0.3327 for this critical 
flow rate confirming once again the ability of lubrication theory to predict important 
features accurately. For unequal speeds A, has to be found computationally. 

This critical flow rate, A,, signals the disappearance of the primary snake and hence 
fluid transfer to the web on the upper roll is by means of the secondary snake entirely. 
It also marks the decoupling of the upstream and downstream eddy structures, and 
termination of the meniscus coating regime. 

5.3. The meniscus coating regime 

In summary the previous results indicate that meniscus roll coating is an inlet-starved 
process, AGI, which can arise when the modified capillary number, Ca(R/Ho)'/2 ,Z 
0.15. Furthermore, it is useful to distinguish between two distinct conditions of inlet 
according to the fluid transfer mechanism. If the inlet is ultra-starved, i < /Z,<.l, fluid 
is transferred only via the primary-snake; whereas if the inlet is starved, As < A 4 A P ,  
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fluid is transferred by both the primary and secondary snakes. This distinction is 
summarized in table 1. 

Finally the results presented in figures 10-21 reveal the many diverse features 
of meniscus roll coating. There is clearly a need for experimental validation of 
the complex eddy structures, pressure profiles, film thickness behaviour, meniscus 
locations and bead width. 

The authors wish to acknowledge the continued support of ICI for this work and 
in particular Drs S. Abbott and S. Howe for bringing such a novel problem to their 
attention. H. M. Thompson would like to record his gratitude to the EPSRC for the 
provision of a studentship. 
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